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Abstract
Thermodynamics is a macroscopic physical theory whose two very general laws
are independent of any underlying dynamical laws and structures. Nevertheless,
its generality enables us to understand a broad spectrum of phenomena in
physics, information science and biology. Does thermodynamics then imply
any results in quantum information theory? Taking accessible information in a
system as an example, we show that thermodynamics implies a weaker bound
on it than the quantum mechanical one (the Holevo bound). In other words, if
any post-quantum physics should allow more information storage it could still
be under the umbrella of thermodynamics.

PACS numbers: 03.65.Ta, 03.67.−a, 05.70.−a

1. Introduction

Since ‘information is physical’ [1] the performance of information theoretic tasks is ultimately
governed by the underlying physical laws used to process it. For example, in quantum
mechanics, information that can be stored or accessed is limited by the Holevo bound [2].
On the other hand, information theory is also deeply connected with thermodynamics as most
notably demonstrated by the resolution of the long-standing Maxwell’s demon paradox [3, 4]
on the basis of Landauer’s erasure principle [5]. The insight acquired from Landauer’s
principle enabled the demon paradox to be extended to the quantum regime [4, 6–8] and its
link with limits on efficiency of certain quantum information processing [9] has also been
established [10, 11]. The amount of heat convertible into work in reversible and irreversible
processes was considered in the context of quantum distinguishability [12] and it was shown
that distinguishing non-orthogonal states perfectly would lead to the violation of the second
law of thermodynamics [13]. The latter suggests that altering quantum laws may have dramatic
consequences on our other theories.
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Here we derive a thermodynamical bound on accessible information in quantum
mechanics from the second law of thermodynamics, which states in Kelvin’s form ‘There
is no thermodynamical cycle whose sole effect is the conversion of heat withdrawn from
a reservoir into mechanical work’. The background of our motivation is the fact that the
generality of thermodynamical laws has led physicists to derive many, at first sight unrelated,
results, such as general relativity [14], the superposition principle in quantum mechanics [15]
and the wave nature of light [16] to name a few. In this paper, we investigate what constraint
the second law imposes on accessible information and show that thermodynamical bound is
weaker than the Holevo bound.

Assumptions we make here are (a) entropy: the von Neumann entropy is equivalent to
the thermodynamical entropy, (b) statics and measurement: a physical state is described by
a ‘density’ matrix, and the state after a measurement is a new state that corresponds to the
outcome (‘projection postulate’), (c) dynamics: there exist isentropic transformations. These
rules can also describe probability distributions in classical phase space. Although we will
use Dirac’s ket notation for convenience, this does not mean that we use the full machinery of
the Hilbert spaces (such as the notion of inner product) and we never use the Born trace rule
for calculating probabilities.

By accessible information we mean information obtained from an arbitrary measurement
on a given system. To give a precise form of the Holevo bound let us consider two
protagonists, Alice and Bob. Suppose Alice has a classical information source preparing
symbols i = 1, . . . , n with probabilities p1, . . . , pn. Bob attempts to determine the actual
preparation i as best as he can. Thus, after Alice prepared a state ρi with probability pi she
gives the state to Bob, who makes a general quantum measurement (positive operator valued
measure or POVM) with elements Ej = E1, . . . , Em,

∑m
j=1 Ej = l, on that state. On the

basis of the measurement result he infers Alice’s preparation i. The Holevo bound is an upper
bound on accessible information, i.e.

I (A : B) � S(ρ) −
∑

i

piS(ρi), (1)

where I (A : B) is the mutual information between the set of Alice’s preparations i and
Bob’s measurement outcomes j, S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy and
ρ = ∑n

i piρi . The equality in expression (1) is achieved if all ρi mutually commute, that
is, [ρi, ρj ] = 0 for all i, j , and the measurement is performed in the joint eigenbasis of ρi .
We will refer to this case as ‘classical’, as it corresponds to distinguishing between classical
probability distributions.

2. The thermodynamical cycle

Let us now derive the thermodynamical bound on the mutual information I (A : B). To this
end we will consider a thermodynamical loop that involves a conversion of heat into work,
whose amount is equal to kT ln 2I (A : B) (throughout the paper we call the kT ln 2 unit of
work as one bit. Here k is the Boltzmann constant and T is the temperature). Examining the
condition on the work balance imposed by the second law, we will have a thermodynamical
bound on I (A : B).

Consider a vessel of volume V filled with N molecules of dilute, inert, ideal gas. Suppose
that p1N molecules occupy the space on the left-hand side (L) of the vessel, whose volume
is p1V , and each individual molecule is in the quantum state |ψ1〉. Similarly, p2N molecules
(p1 + p2 = 1) are in the right-hand side (R) of volume p2V and are all in |ψ2〉. The two states,
|ψ1〉 and |ψ2〉, can be thought of as the states of an internal degree of freedom such as spin.



Thermodynamical cost of accessing quantum information 7177

The two types of molecules are initially separated by a partition and the pressures on both sides
are equal. Note that this situation differs from the encoding/decoding scenario given above
in which Bob has no access to the spatial degree of freedom but can only measure the internal
degree of freedom of the molecules. Even though we primarily deal with only two pure
quantum states and projective measurements with two possible outcomes, our consideration
can easily be generalized to arbitrary numbers of general states and measurement outcomes.

We can now have a thermodynamical loop formed by two different paths between the
above initial thermodynamical state to the final state. In the final state, both constituents, |ψ1〉
and |ψ2〉, will be distributed uniformly over the whole volume of the vessel. Hence, each
molecule in the final state can be described by ρ = ∑

i pi |ψi〉〈ψi |, regardless of the position
in the vessel. One of the paths converts heat into work, involving measurement (and thus it
is irreversible, in general), while the other path, consisting of a quasi-static reversible process
and isentropic transformations, requires some work consumption.

2.1. Work-extracting process

The work-extracting process proceeds as follows. Suppose that we have two semipermeable
membranes, M1 and M2, which separate two perfectly distinguishable (orthogonal) states |e1〉
and |e2〉

(=∣∣e⊥
1

〉)
. These membranes were considered by von Neumann [17] and Peres [13]

and shown to be physically legitimate. The membrane M1 acts as a completely opaque wall to
molecules in |e1〉, but it is transparent to molecules in |e2〉. Similarly, M2 is opaque to molecules
in |e2〉 and transparent to |e1〉. Thus, for example, a state |ψi〉 is reflected by M1 to become
|e1〉 with (conditional) probability p(e1|ψi) and goes through with probability p(e2|ψi), being
projected onto |e2〉. This corresponds to the quantum (projective) measurement on molecules
in the basis {|e1〉, |e2〉}, however, we do not compute these probabilities specifically as stated
above.

We replace the partition separating |ψ1〉 and |ψ2〉 with the two membranes, M1 and M2.
Keeping its temperature constant by contact with a heat bath of temperature T, each gas of
molecules in |e1〉 or |e2〉 can expand isothermally until the pressures of each gas component
on both sides of a membrane become equal. The amount of the mechanical work Wext, which
can be withdrawn from the heat bath, is equal to the accessible information I (A : B), which
is the amount of information Bob can obtain about Alice’s preparation by measurement on
ρ = ∑

i pi |ψi〉〈ψi | in the basis{e1, e2}. Figure 1 shows the equivalence between Wext and
I (A : B). The same correspondence exists also if the initial state is a collection of mixed states,
such as {pi, ρi}, which means that Alice provides ρi with probability pi . The transformation
from the post-work-extraction state, which we call σ hereafter, to the final state ρ can be done
by a process shown in figure 2 and the minimum work needed is given by �S = S(σ)−S(ρ).

2.2. Maxwell’s demon as membranes

There is an alternative way to look at the process with semipermeable membranes. Maxwell’s
demon, who is sitting somewhere in (or by) the box, measures the state of each molecule in
the basis {|e1〉, |e2〉} and memorizes all outcomes from the measurement on all molecules.
Depending upon the actual outcome he operates a membrane Mi (i.e. ‘controls tiny doors’ on
Mi) so that only |ei〉 is reflected and the other state can go through. One may then ask whether
or not some work needs to be consumed to erase the information recorded in his memory at a
certain stage to close the thermodynamical cycle. We show that it is not necessary. Let |m〉
denote the demon’s memory for outcome m. After the observation and work-extraction by
demon, the joint system of the principal system P and the memory M,σPM , can be described
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(a) (c)

(b)

Figure 1. Equivalence between the extractable work Wext and the accessible information I (A : B).
Suppose that each |ψi〉 in the initial preparation was correlated with a state of another degree of
freedom so that in the initial state (a) there are |ψ1〉|L〉 on the left of the vessel and |ψ2〉|R〉 on the
right. As this auxiliary system is hypothetical, we cannot access this degree of freedom throughout
the process discussed in the main text. Nevertheless, if we could make use of membranes that
distinguish |L〉 and |R〉, then we can extract H(A) bits of work to reach the state (c), where
H(A) = H(pi) = −∑

i pi log2 pi is the Shannon entropy. If we use the ‘proper’ membranes,
M1 and M2, that measure |ψi〉 in a basis {|ei〉},Wext bits of work will be extracted, and if |ψ1〉 and
|ψ2〉 are not perfectly distinguishable the membranes will stop before reaching the end of vessel
(as in (b)). Let us consider the gas in |e1〉, for example. In (b), the numbers of |e1〉-molecules
on the left-hand and the right-hand sides of M1 are p(ψ1)p(e1|ψ1)N = p(e1)p(ψ1|e1)N and
p(e1)p(ψ2|e1)N , respectively, where p(x) is the proportion of |x〉 to N (thus p(ψi) = pi ),
and p(x|y) represents the probability of finding |x〉 in |y〉. By using the same membranes as
those used in the direct path from (a) to (c) (namely, distinguishing |e1〉|L〉 and |e1〉|R〉 that are
separated by M1), H(A|B) bits of work can be extracted in the process from (b) to (c). As these
hypothetical work-extraction processes with the auxiliary system are quasi-static and reversible, a
simple relation, H(A) = Wext + H(A|B), holds and this means Wext = I (A : B).

as σPM = ∑
m PmρPm ⊗ |m〉〈m|, where Pm = |em〉〈em| are projection operators. Hence,

unlike the usual discussion of the erasure principle with Szilard’s engine [18], erasing the
demon’s memory in this case is a logically reversible process [5] due to a perfect correlation
between P and M. Therefore a controlled-NOT-like global (isentropic) operation between P
and M can reset the state of M to a standard initial state without consuming work. We can
consider that isentropic transformations, in principle, involve no work transfer [17]. The
difference from the memory erasure in the Szilard model is that the degrees of freedom used
for the work-extraction and measurement are, in our case, not the same. Here the external
(spatial) and the internal (spin) ones are used, while only the external one is employed in the
Szilard model.

2.3. The returning path

Another path, which is reversible, from the initial state to the final state is as follows.
Let {|φ1〉, |φ2〉} be an orthogonal basis which diagonalizes the density matrix ρ, such that
ρ = ∑

i pi |ψi〉〈ψi | = ∑
k λk|φk〉〈φk|, where λk are eigenvalues of ρ. Since any of {|ψ1〉, |ψ2〉}

and {|φ1〉, |φ2〉} is a pure state, appropriate isentropic transformations can transform the initial
state to a state in which λ1V of the vessel on the left is occupied with |φ1〉 and λ2V on the
right with |φ2〉. By using new semipermeable membranes M ′

1 and M ′
2, which distinguish |φ1〉

and |φ2〉 perfectly, we obtain a state ρ uniformly distributed over the volume V , after gaining
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(a)

(c )

(b)

(d )

(f )

(e)

Figure 2. The thermodynamical process to transform σ into ρ. Firstly, after attaching an empty
vessel of the same volume to that containing the gas σ , the membranes Mj are used to separate
two orthogonal states |e1〉 and |e2〉 ((a) to (c)). As the distance between the movable opaque
wall and the membrane M2 is kept constant, this process entails no work consumption/extraction.
As σ = ∑

cj |ej 〉〈ej |, compressing each |ej 〉-gas into the volume of cjV as in (d) makes the
pressures of gases equal and this compression requires S(σ) = −∑

cj log2 cj bits of work.
Secondly, quantum states of gases are isentropically transformed, thus without consuming work,
so that the resulting state (e) will have λjN molecules in |φj 〉, where ρ = ∑

λj |φj 〉〈φj | is the
eigendecomposition of ρ. To reach (f ), S(ρ) bits of work can be extracted by using membranes
that distinguish |φj 〉. As a result, the work needed for the transformation σ → ρ is S(σ) − S(ρ)

bits.

S(ρ) bits of work. As this transformation from {pi, |ψi〉} to ρ via {λi, |φi〉} can be carried out
reversibly, the initial state can be restored from ρ by consuming S(ρ) bits of work.

If the initial state is a combination of mixed states with corresponding weights as {pi, ρi},
the extractable work to reach ρ = ∑

i piρi becomes S(ρ) − ∑
i piS(ρi). This can be seen by

considering a process {pi, ρi} (i)−→ {
piµ

i
j ,

∣∣ωi
j

〉} (ii)−→ {λk, |φk〉} (iii)−→ ρ, where
{
µi

j ,
∣∣ωi

j

〉}
and

{λk, |φk〉} are the sets of eigenvalues and eigenvectors of ρi and ρ, respectively. The process
(i) needs

∑
i piS(ρi) bits of work to be consumed, and similarly the process (iii) provides

S(ρ) bits of work to us. As the process (ii) involves only isentropic transformations, nothing
needs to be written in the work account book. As a result, S(ρ) − ∑

i piS(ρi) bits of work
will be extracted.

3. The second law analysis

Now we can discuss what the second law requires for the thermodynamical loop, which
proceeds as {pi, ρi} → σ → ρ → {pi, ρi} (see figure 3). The second law states that
the net work extractable from a heat bath cannot be positive after completing a cycle,
i.e.Wext − Winv � 0. For the cycle described above, it can be expressed as

I (A : B) � S(ρ) −
∑

i

piS(ρi) + �S, (2)
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(a) (b)

(c)

Figure 3. The thermodynamical cycle to discuss the second law. The cycle proceeds from the
initial state (a) to the final state ρ (c) via the post-work-extraction state σ (b), and returns to the
initial state with a reversible process. The existence of a heat reservoir at temperature T is assumed
for isothermal expansion/compression processes.

where �S = S(σ) − S(ρ). Note that σ is identical to the resulting state of a projective
measurement on ρ in the basis {|e1〉, |e2〉}. Thus, σ = ∑

j PjρPj with Pj = |ej 〉〈ej |
and consequently �S is always non-negative [17]. The inequality (2) holds even if the
measurement by membranes was a generalized (POVM) measurement. This is because any
POVM measurement on a principal system P can be realized by introducing an auxiliary
system (environment) E and performing a projective measurement on E after letting P and E
interact with each other under an appropriate global unitary (thus isentropic) evolution [9].
Even in this case, �S can easily be shown to be non-negative by using the fact that appending
a pure state to the principal system does not change the entropy.

The form of equation (2) is identical to that of equation (1) for the Holevo bound, except
for an extra non-negative term, �S. The existence of �S is essential in the cycle, where
I (A : B) bits of work is extracted, since the returning path (from (b) to (c) in figure 3)
is reversible, thus optimal. This illustrates that there is a difference between the bound
imposed by quantum mechanics (the Holevo bound) and the one imposed by the second law
of thermodynamics. Namely, there is a region in which we could violate quantum mechanics
while complying with the thermodynamical law. In the classical limit, the measurement is
performed in the joint eigenbasis of mutually commuting ρi , consequently �S = 0, and in
addition the Holevo bound is saturated: I (A : B) = S(ρ) − ∑

i piS(ρi). Thus, the classical
limit and the thermodynamical treatment give the same bound.

The same saturation occurs when an appropriate collective measurement is performed
on sequences of m molecules, each of which is taken from an ensemble {pi, ρi}. When m
tends to infinity 2m(S(ρ)−∑

i piS(ρi )) typical sequences (the sequences in which ρi appears about
pim times) become mutually orthogonal and can be distinguished by ‘square-root’ or ‘pretty
good’ measurements [19]. This situation is thus essentially classical, hence, �S → 0 and the
Holevo bound will be saturated.

An interesting implication of our result is the relationship between the second law and the
erasure principle. It has been shown that the form of the Holevo bound can be obtained from
the erasure principle [10]. Together with this, our result suggests that the erasure principle
and the second law, which are commonly believed to be equivalent, do not necessarily give
the same result in the quantum regime.
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4. Conclusion

As mentioned earlier in this paper, Landé has claimed that the superposition principle in
quantum mechanics can be derived by purely thermodynamical arguments that are similar to
our consideration [15]. If this conclusion was correct even in its spirit and if we could really
derive quantum mechanics from thermodynamics, then we should also be able to confirm
the Holevo bound exactly. But, as shown here this is not the case. This should, however,
not necessarily be perceived as a failure of thermodynamics. It is not unlikely that quantum
theory will be superseded by a higher level generalization of which it is a special case, just
like classical mechanics is a limiting case of quantum mechanics. Our paper shows that even
if the amount of stored information in the post-quantum theory can be greater than allowed
quantum mechanically, this can happen without violating the second law.
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